

Proposal for Car to Motorcyclist ASEAN NCAP Assessment for 2026

OASIM - Overall ASEAN market Safety Improvement for Motorcycle

Thanks for the equipment supports in Malaysia to **Denkei** and **ABDYNAMICS**

- ☐ CONTEXT ACCIDENTS IN ASEAN REGION
- ☐ OASIM PROJECT
- ☐ ACCIDENT DATA STUDY
- ☐ MOTORCYCLIST TARGET DEVELOPMENT
- ☐ TEST SCENARIOS

CONTEXT ACCIDENTS IN ASEAN REGION

CONTEXT

OASIM

ACCIDENT DATA

MOTORCYCLIST

TEST SCENARIOS

Distribution of deaths by road user type by WHO Region

CONTEXT ACCIDENTS IN ASEAN REGION

CONTEXT

OASIM

ACCIDENT DATA

MOTORCYCLIST

TEST SCENARIOS

Exemples of the PTW dramatic situation in ASEAN region

ASEAN NCAP ROADMAP

CONTEXT

OASIM

ACCIDENT DATA

MOTORCYCLIST

TEST SCENARIOS

➤ ASEAN NCAP → Integration of Motorcyclist Safety assessment in the Guideline of 2021 – 2025

Need to focus on improving the safety of motorized 2- and 3- wheelers since it represents the most important part of motorized vehicle in the region.

From 2026: ASEAN NCAP would become the most challenging protocol in **Motorcyclist safety**

	AOF	•	COP		Ш	Safety Assist	Safety Assist		Motorcyclist Safety	
A 105111	Item	Max	Item	Max		Item	Ma	Item		Max
ASEAN	Frontal	16	Frontal	16		<u>EBA</u>	6	<u>BSD / BS</u>	<u>v</u>	8
N C A P	Side	8	Side	8		SBR(Fr.)	3	<u>Rear Vie</u>	w Technology	4
2021-2025	<u>HPT Evaluation</u>	8	CRS Installation	12		SBR(Rr.)	1.	<u>AHB</u>		2
2021-2025			Vehicle Based Assessment	13		SBR(Rr.) Advanced	1.	Pedestr	ian Protection	2
			Child Presence Detection	2		AEB City	2.			
						AEB Inter Urban	3.	[Advanc	ed MST]*	2*
						Advanced SAT	3	*BONUS	POINT	
Score		32		51				1		16
Weighting		40%		20%			20	6		20%
			Slanting = Fitment Rating S	<u>ystem</u>				* To add	2 points MAX to total I	MS point
	AOP (%)	COP (%)			Safety Assist (%)		1	Motorcyclist Safety	(%)
5 *	80		75			70			50	
4 *	70		60			50			40	
3 *	60		30			40			30	
2 *	50		25			30			20	
1 *	40		15			20			10	

ASEAN NCAP places high importance on Motorcyclist Safety and this shall distinguish us from the other NCAPs. In 2026, ASEAN

ASEAN NCAP Roadmap 2021-2025

OASIM Project

OASIM PROJECT

CONTEXT

OASIM

ACCIDENT DATA

MOTORCYCLIST

TEST SCENARIOS

Improve the motorcyclist safety in the ASEAN region

- By identifying the **main accident situations** between motorcycle and passengers cars.
- Develop the testing tools to reproduce these accident scenarios to be able to evaluate possible advanced driver assistance system (ADAS).
- Support active system development that can avoid the accident or limit the consequences of the impact.
- **Promote motorcyclist safety** with an official rating

OASIM PROJECT

CONTEXT

OASIM

ACCIDENT DATA

MOTORCYCLIST

TEST SCENARIOS

Overall ASEAN market Safety Improvement for Motorcycle (OASIM)

Accident data study

- Literature Review
- ASEAN national & in-depth databases
- Main accidents motorcyclist vs cars

Motorcyclist Target Development

- ASEAN-region-most-representative motorcycles
- Target's ISO specifications development
- Propulsion system evaluation

Test and Assessment Protocol for ADAS systems

- Test procedures for the selected use case definition
- ASEAN-region main accident situations

Synthesis of the results

- Project synthesis
- Results compilation
- Discussions sum-up

Dissemination

- Results dissemination
- •Feed into ASEAN NCAP Roadmap
- ASEAN NCAP assessment integration

Partners

Contributors

Thanks for the equipment supports in Malaysia to **Denkei** and **AB**DYNAMICS"

CONTEXT

OASIM

ACCIDENT DATA

MOTORCYCLIST

TEST SCENARIOS

ceesar

Objective: Compile accident data for ASEAN countries, identify the main accident scenarios &

parameters

Scope: Accidents between one passenger car/pick-up against one motorcycle within 10 countries

(ASEAN region)

Literature review

- Accident characteristics, driver and riders characteristics
- Vehicle fleet composition, network characteristics

ASEAN countries road traffic context
Main collisions

Main accidents situations

Accident sub-scenarios and detailed parameters

CONTEXT

OASIM

ACCIDENT DATA

MOTORCYCLIST

TEST SCENARIOS

12

Literature review

Data on Cambodia, Malaysia, Singapore, Thailand, Vietnam, ASEAN

Collision type:

Angular Head-on

Databases

Malaysia (national) and Thailand (in-depth)

Fleet composition about 50/50 car and motorcycle High% of motorcycle among the road deaths (73% Thailand, 62% Malaysia)

OASIM accident	Type of	Impact on the		Manoeuvre of the	% KSI	% KSI
scenarios	collision	ollision motorcycle		motorcycle	Malaysian data	Thai dat
Rear-end	Rear-end	MC – Rear Car - Front	•	Same direction	5%	9%
Head-on	Head-on	Front	•	Opposite	36%	19%
Angular with			•	Forward/other (Malaysia)		
frontal impact on the motorcycle	Angular	Front	•	Forward same direction/ opposite direction (Thailand)	15%	20%
Angular with lateral impact on	Angular	Lateral	•	Forward/other (Malaysia)	4%	9%
the motorcycle	Angular	Lateral	•	Forward same direction/ opposite direction (Thailand)	470	970
Angular with motorcycle turning	Angular	Lateral/Frontal	•	Motorcycle turning	6%	13%
Right-angle (crossing)	Lateral 90°	Lateral/Frontal	•	Perpendicular direction	5%	7%
Side-swipe	Lateral for both	Lateral	•	Same direction	7%	6%
		Total Coverage			78%	83%

(car)

10%

CONTEXT OASIM **ACCIDENT DATA MOTORCYCLIST TEST SCENARIOS**

configuration Intersection

13

Study of 12 sub-scenarios based on 24 variables (general conditions, road characteristics,

changing lane

or entering the trafic

entering

the trafic,

going straight

SIDE-SWIPE 2

MOTORCYCLIST TARGET DEVELOPMENT

REPRODUCTION OF ACCIDENTS

CONTEXT

OASIM

ACCIDENT DATA

MOTORCYCLIST

TEST SCENARIOS

15

Test ADAS system within accident situations

- Risk of collision ⇒ develop a crashable motorcyclist target
- Accuracy

 use driving robots to reproduce the trajectories and the synchronisation with the motorcyclist

MOTORCYCLIST TARGET DEVELOPMENT

CONTEXT

OASIM

ACCIDENT DATA

MOTORCYCLIST

TEST SCENARIOS

Objective: Development of a crashable target with the same detection characteristics as a real representative ASEAN market motorcycle.

Specific NIR behaviour

Properties verified according to the methods described in the related ISO/WD 19206-5:2023(E) – Standard (Road vehicles — Test devices for target vehicles, vulnerable road users and other objects, for assessment of active safety functions — Part 5: Requirements for Powered Two-Wheeler targets).

MOTORCYCLIST TARGET DEVELOPMENT

CONTEXT

OASIM

ACCIDENT DATA

MOTORCYCLIST

TEST SCENARIOS

Objective: Development of a crashable target with the same detection characteristics as a real representative ASEAN market

motorcycle.

TEST SCENARIOS

SELECTION OF THE TEST SCENARIOS

CONTEXT

OASIM

ACCIDENT DATA

MOTORCYCLIST

TEST SCENARIOS

19

☐ Based on the main accidents studied and the feasibility to address the situation with ADAS systems

<u>Literature Review</u> scenarios

- Head-on
- Side impact / Angular
- Side-swipe
- Rear-end

Priority 1

Priority 2

Priority 3

Selection of the test scenarios

CONTEXT

OASIM

ACCIDENT DATA

MOTORCYCLIST

TEST SCENARIOS

20

Based on the main accidents studied and the feasibility to address the situation with ADAS systems

Priority 2

Priority 3

Test scenarios for 2026

CONTEXT

OASIM

ACCIDENT DATA

MOTORCYCLIST

TEST SCENARIOS

21

Represent around 30% of cases observed in the accident data study

CMRm		CMFtap	CMCrossing	CMOncoming	
Paragraph	8.3.1		8.2.2	8.2.3	8.2.6
Type of test	AEB	FCW	AEB	AEB	LSS
VUT Speed [km/h]	40-60	40-80	(2026) 10,20	20-60	72
VUT direction	Forward		Farside turn	Farside and nearside	Farside
Target speed [km/h]	30,45,60		30,45,60	20	60
Impact location [%VUT width]	50	50 and 25	50	50 -50% motorcycle length	10
Lighting condition	ting condition Day		Day	Day	Day
Number of test	36 speed combinations (best case: 22 tests)		6 tests	9 speed combinations (best case: 5 tests)	4 – 5 tests

TEST FEASIBILITY

22

CONTEXT OASIM ACCIDENT DATA MOTORCYCLIST TEST SCENARIOS

☐ Test on the track: boundaries VUT side

TEST FEASIBILITY

CONTEXT

OASIM

ACCIDENT DATA

MOTORCYCLIST

TEST SCENARIOS

23

Test on the track: Target {dummy + platform} side

Proposal for Car to Motorcyclist ASEAN NCAP Assessment for >2026

OASIM - Overall ASEAN market Safety Improvement for Motorcycle

Thanks for the equipment supports in Malaysia to **Denkei** and **ABDYNAMICS**

Suggestion roadmap for oncoming assessments

TEST SCENARIOS CONTEXT OASIM **ACCIDENT DATA MOTORCYCLIST** 25 BSW/BSD **AEB** Roadmap proposal ADAS Assessment BSW/BSD LSS-ELK/LDW AEB BSW/BSD LSS-ELK/LDW AEB LSS-ELK/LDW 2031* 2026 BST(BSV/BSD) 2021 VUT trajectories

2031 Test scenarios

CONTEXT ACCIDENT DATA MOTORCYCLIST TEST SCENARIOS 26 OASIM

	CMFtap	CMCrossing	CM Head-on
Type of test	AEB	AEB	AEB / +
VUT Speed [km/h]	30	20-60	55-60
VUT direction	Farside turn	From farside and nearside	Forward
Target speed [km/h]	30,45,60	>20	50-72
Impact location [%VUT width]	50 Lane of the motorcycle	50 -50% motorcycle length	50
Lighting condition	Day	Day	Day
Obstruction	No	YES	No
Feasibility			
Comment	Investigate higher speed for VUT 30km/h and intersection configuration	Second step of the crossing scenario integration	Main issue is the test feasability High relative speed

Feasability				
	Feasible			
Complicated				
Highly complicated				

>2031 Test scenarios

CONTEXT MOTORCYCLIST TEST SCENARIOS 27 OASIM **ACCIDENT DATA**

	Turning scenario, Right Turn	Turning scenario, Right/Left	Head-on scenario, opposite	Head-on scenario, lane
	Into Path – Perpendicular	Turn Across Path – Same	direction - lane change	change vehicle manoeuver
	Direction	Direction	motorcycle manoeuver	opposite direction
Type of test	AEB	AEB	AEB / FCW	AEB / FCW
VUT Speed [km/h]	20	30	60	60-90
VUT direction	From farside	From farside and nearside	From farside	From farside
Target speed [km/h]	40-70	50-70	60	50-60
Impact location [%VUT width]	Front right 20-40°	Side right (wheel) 0-20°	50	50 10°
Lighting condition	Day	Day	Day	Day
Obstruction	No	No	Yes	Yes
Feasability				
Comment	Similar to crossing (CMCrossing) and turning (CMFtap)	In complementary to BSD Similar to BSD and turning (CMFtap)	Half of the accident with obstruction / half clear	
*adapted to the timeline and expactations	#2		#6	#7

OASIM - ASEAN NCAP Test Protocol Proposal for Motorcyclist Assessment 2026

>2031 Test scenarios

CONTEXT ACCIDENT DATA MOTORCYCLIST TEST SCENARIOS 28 OASIM

	1	I	
	Car-to-Motorcycle Cut-in scenario	Turning scenario, straight path - right turn across path – same direction	Head-on scenario, (case: motorcycle enters car lane)
Type of test	AEB	AEB	AEB / +
VUT Speed [km/h]	70-80	10-40	55-60
VUT direction	Forward	From farside	Forward
Target speed [km/h]	40-60	50-70	50-72
Impact location [%VUT width]	Dépend of the manœuvre of the motorycle Front left of the VUT / right side of the M	Front Right side (wheel) 0-10° up to 60°	100%
Lighting condition	Day	Day	Day
Obstruction	No	No	No
Feasability			
Comment	Motorcycle manoeuvre complicated to define Impact point shows the last minute lane and it would be really difficult for the system to react.	Motorcyclist fault	Similar to head-on scenario but motorcyclist fault

Thank you for your attention

Thanks for the equipment supports in Malaysia to **Denkei** and **ABDYNAMICS**

